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The purpose of this paper is to consider the geometry of a manifold M, equipped with 
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geodesics through conformal singular points retain their significance as an almost meeting 
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1. Introduction 

For an arbitrary smooth symmetric (0,2) tensor field g on a smooth n-di- 
mensional manifold A4 we define the set of singular points of g to be 

E = {p E A4 1 g, is degenerate} . 

In the domain of a chart (U, 4), U n E consists of the zeroes of det{gij}. If 
this function has at p E B a critical point, then p is a critical singular point, 
otherwise a noncritical singular point of g. This is a coordinate independent 
property. In general E is nonempty. In particular this will often occur, when 
M is an arbitrary submanifold of a semi-Riemannian manifold and g is the 
pullback of the metric tensor in the ambient space. Also define 

Z (k ) = {p E M 1 g,, is nondegenerate of index k} , 

where the index of g, is the dimension of the largest subspace on which g, is 
negative definite. Notice that the Z(k) are semi-Riemannian manifolds. Thus 
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E(k) has a Levi-Civita connection. In section 2 we answer the following 
questions in the affL-rnative: 

Do geodesics for the Levi-Civita connection of B (k ) reach noncritical 
points of Z ? If so, can one suitably extend geodesics from, say, E(k) to 
Z(k + l)? 

Section 3 deals with the problem of parallel translating vector fields along 
curves through noncritical singular points. 

Now suppose, that g = fh, where h is a smooth metric tensor and f 
is a smooth function on M. The zeroes of f are called conformal singular 
points. Theorem 4.1 gives the existence and uniqueness of geodesics through 
conformal singular points. This enables one to define parallel translation across 
conformal singular points, when M, f and h are real analytic. This in turn 
gives rise to the existence and uniqueness of Jacobi fields along geodesics 
through 2;“. These results are useful, since one can find a geodesic variation of 
a geodesic through E, whose variation vector field is a prescribed Jacobi field. 

The study of intrinsic properties of degenerate submanifolds has been con- 
sidered in refs. [ 7-91. These papers take a different approach. It is assumed 
that the index and null index of the metric is constant. Degenerate Lagrangian 
systems constitute a slightly more general problem. Their study was initiated 
by Dirac in ref. [ 21. This work was continued in refs. [ 11,15,17]. The present 
paper is also related to ref. [ 181. This work on constrained differential equa- 
tions has applications in electrical circuit theory, which are also the incitement 
for refs. [ 14,101. 

2. Degenerate pregeodesics 

In this section we prove an existence theorem for geodesics through 8. To 
this end we need 

Definition 2.1. A CL-curve y : It-,t+ [ --f M defined on a neighbourhood of 
zero is a degenerate pregeodesic through p E 1;1, provided y (0) = p and the 
restriction of y to It-, 0[ and 10, t+ [, respectively, are pregeodesics in M\c”. 

Recall, that a pregeodesic in M is a smooth curve /3 : I + M, which 
can be reparametrized to a geodesic. Given a chart (U, 4) around p, &fine 
a function f = det{gij} on U. In this section we assume, that p E S is a 
noncritical singular point for g. We can then suppose that 0 is a regular value 
off, hence B fl U is a smooth hypersurface of U. Define I/ = U\E and a 
smooth vector field 

x : TV--f TTV , Yt--+X(Y) , 
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where X (y ) denotes the geodesic spray evaluated at y E TV. f o n - X has a 
unique smooth extension k to TU. In the coordinates 

f@(u,w) = (~,w,f~~~~w,-~~,~,~~ijkw~Zlje~) = (~,w,foa~w,Y(u,w)) , 

where 4; is the unique smooth extension off Z$ to U, 4; are the Christoffel 
symbols and ei, . . . . en is the canonical basis in IF’. 

Definition 2.2. w E T,M\T,,Z is radial provided (w )L and X ( w ) are linearly 
dependent. 

Here (w )h denotes the vertical lift of w E T,M with respect to TJ E T,M as 
in [ 1, p. 2271. In fact (W )t is the tangent vector to the curve t I-+ TJ + tw at 
t = 0. Thus a vector in T,M\T,c” is radial iff its local representative w and 
Y (4 (p), 2) ) are linearly dependent. Radiality is coordinate invariant and an 
important concept for the geodesic existence problem in the present context. 

Theorem 2.3. w E T,M\T,Z is radial if there is a degenerate pregeodesic y 
through p with y’ (0) = w. 

Proof. In a chart (U, 4) around p, f induces a function on o(U) also denoted 
f. Define a vector field 

z : 4(U) x Rn\{o} + IF!” x R” , 
(V,Y) H(Yf(21),Y(UU,Y) -v(wMw)/hY)) = (Yfbwmw) . 

Here ( , ) denotes an inner product in R” with associated norm ]] 11. 
Suppose w E T,M\T,E is radial. This implies that the local represenmtive 

(u, z ) of w is a singular point for Z. Then 

D&v, = ZDh 0 
0 h,z) 02 Wu,r) 

has eigenvalue rZ I Dfu (z) < 0 , say. Now take a generalized eigenvector 
(v, ~2 ) for DZ(,,,) belonging to 1 with v1 + 0. Then vl 4 ker Dfu. According 
to the stable manifold theorem [5, p. 1521 there exist x = (xi ,x2), y = 
(yi,v2) E W(Z, (u,z)), such that f (xi) > 0 and f (yr) < 0. This is because 
2) is in the tangent space to IV(Z,(u,z)) at (u,z). Here W(Z, (u,z)) 
denotes the stable manifold of Z through (u, z ). Now define 

v : un\f -‘UN x R”\(O) + iv x R” , (V,Y) H &pY, , 

F(t) = 
J If OKI o@x(s)dr , t E ]rJZ),t,+W)[ 3 

0 
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where @ and Y denote the flows of Z and V, It.; (Z ), 2.: (Z ) [ denotes the 
domain of definition of 0-T and nl is projection on the first factor. Then 
YJV o F = @,, since f is nonzero along @,. We claim that tf (V) < +oe. 
There are E > 0 and k > 0 such that 

If(x)15 kllx-ull , XEB,(U)C(P(U) ) 

where Bc (u) denotes the open ball of radius E around U. Since x belongs to 
Ws (Z, (u, z) ) there are o, /3, T > 0 such that 

11 @t:(t) -u 11 I crexp(-B1) , t 2 T . 

Hence 

J 

I 
F(t) I o k(l@sj(~)-uII ds+K, <Kz<+x 

for all t 2 T and some positive Kl and Kl. Similarly t-; ( V ) > -cc. Due to the 
definition of V we have yY = (/I, 8’) and !& = (6,6’); hence the covariant 
derivative of /3’ is 

According to the definition of V, /I and S are regular curves. Since j? and p” 
are collinear, the restriction of B to IO, if (V) [ is a pregeodesic according to 
[ 12, p. 951. Similarly the restriction of 6 to ]r; ( V), 0 [ is a pregeodesic. Now 
define r to be 

i 

y;ct + c-(V)) > tE I-tf(Y),O[ , 
F(l) = u , t=O, 

!q (t + t,(W , tc lbq(V[ , 

and verify that it is Ct. Finally put y = 4-t o F, which is a degenerate 
pregeodesic with initial velocity w. 

Suppose now for contradiction that a w E T,M\T,Z which is not radial 
had a degenerate pregeodesic y : ] t-, t+ [ + U with y’ (0) = w. Again we use 
(u, z) to denote the local representative of w. Reparametrize the restriction of 
y to IO, t + [, to a geodesic. The local representative of this geodesic is denoted 
F. Now we can reparametrize r to a smooth curve /3 such that @,/I’) is 
an integral curve of V, again using [ 12, p. 951. This integral curve in turn 
can be reparametrized to an integral curve c : Is-, s+ [ -+ 4 ( U ) x 58” for 
the vector field Z. Since J o /I is everywhere nonzero, we can assume that 
f o /3 is positive, the other case being similar. The definition of the vector 
field V shows that (/?‘, /I’) is constant. For some nonzero real number Q we 
then have r(t) -, (u,&z) as t + s-. Now s- > --x , because Z (u, (TZ) # 0 
when w is not radial. But since f o nl = 0 is invariant under the flow of Z, 
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this contradicts uniqueness of integral curves for 2 through (u, az). Hence w 
cannot have a degenerate pregeodesic and the theorem follows. 0 

Theorem 2.3 characterizes radial vectors geometrically as being those vectors 
w in T,M\T,Z for which there exists a degenerate pregeodesic through p with 
initial velocity w. 

Remark 2.4. One could view the definition of 2 in theorem 2.3 as a blowing 
up construction for second order differential equations. Note that 4 ( U) x S”-’ 
is invariant under the flow of Z. Concerning the blowing up construction for 
first order differential equations, see, for instance, ref. [ 31 or ref. [ 191. 

Example 2.5. Consider M = I$!’ with (0,2) tensor g = udu* + dv’ in 
coordinates (u, v ) E [WI. The geodesic equations are 

Hence 
Y(u,v;x,y) = (+*,o). 

z = (1,O) is radial and dfo( z) = 1 , hence theorem 2.3 applies. Notice that 

70) = (s > s 1 s 13’*) 3 SER, 

are degenerate pregeodesics with y’ (0) = ( 1,O) regardless of the value of 
/3 E R. So theorem 2.3 gives us existence of degenerate pregeodesics , but there 
may be several degenerate pregeodesics with the same initial velocity, that are 
not just reparametrizations of each other. 

Example 2.6. Let Q denote a smooth function on W,. By revolving the smooth 
curve 

in IR:, with metric tensor g = do* + dy* - dz*, around the third axis we 
obtain a smooth surface M of revolution in Wi. If cr’(so) = f 1, then the circle 
C in x3 = a (so) with center in (O,O, Q (sc) ) and radius SO consists of singular 
points for the pullback of the metric tensor from I$ to M. If cr” (SO) + 0 
these singular points are all noncritical. The radial vectors in T,M,p E C, are 
precisely the nonzero tangent vectors to the meredian curves. Due to theorem 
2.3 a degenerate pregeodesic through a singular point p E C and with initial 
velocity transverse to C, must be tangent to the meridian curve at p. 
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3. Parallel translation 

Consider a smooth curve LY : ]a, b [ = I 3 0 --t M, such that cr (C) is in E 
for t = 0 only. We will assume that p = a (0) is a noncritical singular point 
and that a’(O) $ T,Z. The aim of this section is to prove the existence of a 
subspace A, of the tangent space to M at p such that for every w E AP, there 
exists a parallel vector field X along the restriction of cy to I\(O) such that 

Now let (U, 4) be a chart around p. To any y E T,M take a smooth vector 
field Y along Q such that Y (0) = y and verify that 

filnfocl V*lY(t) (3.1) + 

exists and is independent of the choice of Y. The tangent vector in (3.1) is 
denoted L(y). This defines a linear map L : T,M -) T,M. This linear map 
depends on the choice of chart, but its kernel A, does not. 

Lemma 3.1. dim/i, = n - 1. AP is nondegenerate. 

Proof: We can and will assume that a(l) is contained in the domain of a chart 
(U,d> such that 

where gii = 0, gii + 0 for i 2 2. This follows from the fact that p is a non- 
critical singular point and because we can take an orthogonal basis ‘~1,. . . , v,, 
for TPM, that is, g(vi, Vi) = g(vi, Uj)dj. It will reduce the forthcoming com- 
putations significantly. Now define 

A:ZxlR”-R” ,A(t)(y) = -CJjai(t)yjek . (3.2) 

Notice that -A (0) is the local representative of L. Letting {Gij} denote the 
matrix of cofactors of {gij}, we have GA1 f 0, Gf = 0 otherwise. This means, 
that the matrix representation of A(0) in the canonical basis of Rn is 

(11 . . . a, 
0 0 . . . ( 1 . . . , . . . 
;, .:. 0 
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where 
1 agil agkl 

ak=C G”y(~+~- 1 
i 

@a:(O) . 

The first part of the lemma now follows from the observation that (11 = 4 x 
df(cr’(0)) f 0, where f = det{gii}. Now define 

{fk}klz constitutes a basis for & and g(fk,fi) = gk&, from which the 
lemma follows, cf. ref. [ 12, 2, lemma 191. 0 

We can now prove the following characterization of the subspace /i,. 

Theorem 3.2. The tangent vector v, E T,M is in A,, $f there exists a parallel 
vector field X along the restiction of a to I\(O) such that X(t) t v, for t t 0. 

ProoJ Let v, E A,. There is no loss of generality in assuming that a(l) is 
contained in the domain of a chart (U, 4) around p. Now let A denote the 
linear time dependent vector field, defined in (3.2). Furthermore define 

B : R”xI+lR”xfF!, (y,f3)++L4(8)y,foa(~)) - 

Notice that (z$‘, 0) = (v, 0) is a singular point for the vector field B and 
that 

DB AtO) * 
(WI) = ( > 0 L ’ 

where we have put 1 = df ((Y’ (0) ). With no loss of generality we can assume 
that 1 < 0. There exists a generalized eigenvector r~ = (VI, vz ), 212 f 0, 
corresponding to the eigenvalue 1. According to the stable manifold theorem 
there exist x = (&S) and y = (~,a) with f o(w(6) > 0 and f ecu(o) < 0 
such that 

CDx(t),Dy(t) ---) (v,O) fort --) +oo , 
where Q, is the flow of B. This is because v is in the tangent space at (v, 0) 
to the stable manifold of B through (v, 0). Now define 

I 
I 

h(t) = dv 
($ fOQ(V) ’ 

tE la,O[ , H,=F,-’ , 
t 

Fy(t) = D fo:(vl 3 t E lOsb[ > 
I 

Hy=Fy-’ . 
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Use the identities H.t = 0.: and H.,. = @,? to verify that 

is the local representative of the parallel vector field A’ that we seek. Simply 
differentiate A’@ and use the definition of B and then the definition of A to 
show that A’ is parallel. X (t ) converges to ‘u because x and J: belongs to the 
stable manifold of B at (v, 0). 

Given v 4 A,, assume for contradiction that there exists a parallel vector 
field X,, along the restriction of a to Z\(O) such that X,, (t) -r ‘u for t --f 0. The 
first part of the proof shows that we can find parallel vector fields Xi, -.., X,-t 
along the restriction of o to Z\(O) such that lim,,eXi (t) , ...,lim,,oX,-t (t) 
exist and constitute a basis for A,. But { limr-e Xi(t) };=t...., cannot span 
T,M, since then 

1’~ det{g(Xi(t),Xi(t))} + 0 ! 

although p E Z. 0 

Example 3.3. Consider again Ad = Iw’ equipped with the (0,2) tensor from 
example 2.5. Parallel transport along a : R + R’ , t ++ (t, 0) is controlled by 

dx -= 
dt 

This means that X(t) = (1 t I-‘/‘, 1 ), t f 0, is parallel and /i,-, = ker dzcc. 

4. Conformal singular points 

Let us now change the setting and consider a smooth manifold M, equipped 
with a c” two tensor g = f h, where f is a smooth function on M and h is a 
smooth semi-Riemannian metric tensor on M. Notice that in this context the 
singular points are never noncritical when the dimension of M is greater than 
one. Hence the existence results of the previous two sections do not apply. 
Instead we can do better and get the existence and uniqueness of geodesics 
through a singular point p for the two tensor g. The set of points in M 
where f is nonzero is open in M and thus g has a Levi-Civita connection 
V here. The proof of the next result shows that a tangent vector w on 
the null cone {v E T,M 1 h (v, w ) = 0) at a conformal singular point p has 
a smooth degenerate pregeodesic with initial velocity W, provided suitable 
nondegeneracy conditions hold. 
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Theorem 4.1. 
(i) To ewzy a E R and v E T,hf with h (v, v) = 0 and df (v ) > 0 , there 

esukts a Vg geodesic y : IO, E [ + M with 

f‘oY(t) y’(t)-v -fort-O , 

.m’,Y’) = a , .foy>O. (4.1) 

If Q : IO, EO [ + Af is a geodesic satiq@ing (4. I), then Q = y in their common 
domain qf definition. 

(ii) Suppose h (df, df )p > 0. Gben Q > 0 there exists a Vg geodesic 

y: ]-E,E [ \ (01 *M 

satisjILing (4. I) with v = 0. If c : ] - ~0, EO [ \ (0) + M is another geodesic 
sati.@ing (4.1), then CJ = 1’ in their common domain of dejnition. 

Proqf: Take an integral curve q : ] - 6,6 [ - T’M for the Hamiltonian vector 
field X; with Hamiltonian K - $af o a* on T*hf with its canonical two form 
such that q(O) = h(v, .). Here K is the kinetic energy , p w fh(p,p) defined 
on T’M and a* is the cotangent bundle projection. Define /I = a‘ o q. 

( 1) Use dfp (v) > 0 to reparametrize q for small enough positive t to an 
integral curve of the Hamiltonian vector field on T*hf with Hamiltonian K; 
hence the base curve y is a geodesic , cf. ref. [ 1, pp. 218, 2231. Now (4.1) 
follows, since K - faf o x* is identically zero along ~1. If r~ : IO, E [ + M is a 
geodesic, satisfying (4.1)) define 

t t 
FaCtI = I 1 

c/z f 00(s) ds ’ 
E;(t) = 

J 
1 

c/z f 0 I,(S) ds ’ 

for t E ] 0, E [. F0 and E; have inverses HC and H7 according to (4.1). 
g(o’;) o H, and g(lr’,.) o Hy are then integral curves of Xz. Take a flow 
box, cf. [ 1, p. 67, 2.1.91, for X,t around h(v, .) and use this to verify that 
the images of Fb and Fy are intervals ]a,) a2 [ and 361, b2 [, respectively, with 
al,bl > -CC This in turn means that al and bi belong to the domain of 
definition of @, and &,, respectively, and that 

where u = g(a’(c/2),.) , v = g(y’(c/2), .) and CD denotes the flow of Xz. 
Hence there exists a 8 E ] - E,E [ such that y(t) = o(t - 8), whenever both 
sides are defined. Now (4.1) implies that CJ = y. 
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(2) Define 

F(f) = (4.2) 

forte]-6,6 [\{O}=JandputF(J)=I.Verifythat 

($oB)‘U) = +h(df,df), + o(t) 

by using the fact that q is an integral curve of X,+; hence 

b'(S) = S l(S) , I(O) = $ygradhf , 

where I is analytic. We can therefore suppose that F’ > 0 on J and put 
H = F-l. Now define y = /I o H and prove its uniqueness as in ( 1). Cl 

Remark 4.2. A potential function V : M + R and an energy level E E [w give 
rise to the Jacobi metric hi = (E - v )h and the E configuration space 

It is well known that the physical paths of the mechanical system with kinetic 
energy K : TM + W , u I+ i/z (v, 21) derived from the metric and potential 
energy V , i.e. solutions of y” = - grad V in ME, are precisely the geodesics 
of the Jacobi metric, see ref. [ 1, p. 2281 or ref. [ 131. Theorem 4.1 shows how 
geodesics can behave near boundary points of ME. 

Example4.3.In (M,g),whereM = R2,/z = dx:-dX,and$(xr,x2) =x1,X; 
from the proof of theorem 4.1 has the flow 

@@.q) (s) = (~c& + p1s + 41, -P2S + 92, +s + PIA) * 

Hence y(t) = ((t2)li3,0) , t E R\(O) and a(t) = (2t)ii2(1, 1) , t E W+ are 
geodesics. This shows that geodesics hitting the bad set Z at time 0 are in 
general not differentiable at 0. 



J.Chr. Larsen / Singular semi-Riemannian geometry 13 

5. Parallel translation through conformal singular points 

In the rest of this paper we consider a real analytic n-dimensional manifold 
M with symmetric (0,2) tensor field g = fh, where f and h are real analytic. 
Let y : I --) M denote the unique geodesic satisfying (4.1) with w = 0 and 
some Q > 0. It is defined on some punctured open interval I around 0 in Iw. 
Recall that y o F = p extends to an analytic curve on 11 = I U {0}, where 
F : J + F(J) = I is defined in (4.2). This extended curve is also denoted 
/?. F has an inverse H. Finally put JI = J u (0). We will use this notation 
throughout the rest of the paper. 

Theorem 5.1. To any v E Tp M there exists a Vg parallel vector field X along 
y such that W = f o B X o F extends analytically to J1 and 

V$,W(t)+v firt-+O. 

If Z is a parallel vector field along y satisfying the above requirements, then 
z = Y. 

Prooj Since f 0 j? is analytic we can write 

f o/W y :coaksk , IsI< 6 9 (5.1) 

for S small enough. In some chart (U, 4) around p , consider the system of 
differential equations 

a2s 
zdYk 

- = 
ds 

+ #lf(B’Wk -df(YM~ + gradhfkWJ’))] , (5.2) 

where f o p(s) = a2s2b(s) and b is analytic. Here “l-$ are the Christoffel 
symbols for the metric tensor h and a superscript or subscript k E { 1, . . . . n} 
means the kth coordinate. gradh f k and fik are the kth coordinate of the local 
representative of gradh f and p, respectively. The right hand side of (5.2) 
defines a matrix A(s) such that A (s ) ( Y )k equals this bracket for all Y and 
k. Since A is analytic we can write 

A(s) = &Sk , ISI <a, 
k=O 
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by reducing 6 if necessary. Let Ct E W and define for k 2 1 

Ck+, = [~z(k + 1) id-4t]-‘eAn+z-iC, = D/,. . 
j=l 

This is well defined, since computations show that 

A(0) = 0 ) ~2 = @WXf-)p , At = &h(df,df)p id . 

To see this we use that p is an integral curve of the Hamiltonian X,t from the 
proof of theorem 4.1; hence 

p;(o) = 0 3 p;(O) = &grad/J” . 

Put I/;: = ]] Dj ]] )‘i , )’ E 10, S [ and deduce that 

for some K 2 1. According to ref. [4, p. 901 we have that 

K(K+ l)*..(K+k-2) 
(k - l)! +-* II Cl II I s Ik ; 

hence 

Y(s) = &.sk 
k=l 

is well defined and analytic in a neighbourhood of zero . Check that Y satisfies 
(5.2) by comparing the power series expansion of the right hand side with the 
left hand side of (5.2). Put X4(t) = (l/f o y)Y o H(t) for small nonzero t 
and verify that Ct can be chosen so that X gives us what we seek. 

If Z is a parallel vector field as stated in the theorem, then the local 
representative U of .f o /I? Z o F satisfies (5.2). Then 

Y(s) - U(s) = i3”(C, - Ck)Sk ) 
kc0 

which is defined on a neighbourhood of zero, satisfies (5.2); hence 

+mK(K+ l)... (K+k-2) II Y(s) - U(s) ll I c (k - l)! ).k-’ I~l”llG-c~ll =o, 
k=l 

if Ct = C;. This finishes the proof. 0 
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6. Jacobi fields 

Now we aim to study how Jacobi fields behave along the geodesic y . In 
the rest of this paper we assume that h is Riemannian and use the curvature 
sign convention 

RxrZ = V[X,Y] z - [Vx,VrlZ . 

Theorem 6.1. Given v,w E T$, there exists an analytic Vg Jacobi field Y 
along y such that Y is orthogonal to y’ , Y o F extends analytically to J, and 

fiqY(t) = v , tiyVi,Y o F(t) = w . (6.1) 

If W is another Jacobi field along y orthogonal to y’ such that W o F extends 
analytically to JI and satisJies (6. l), then W = Y. 

ProoJ We have the power series expansion (5.1) for S o p(s) = a2s2b (s). 
Take a basis d,, . . . . d,+, for T,E such that h (dk, d,) = a*@; hence 

h(gradjlf,d;) = 0 . 

According to theorem 5.1 there exist parahel vector fields Ei along y such that 
lims+O Vi, We = di where Wi = fop Eio F. In view of the local expression 
for X; from the proof of theorem 4.1, we have 

2wr’V’(s) 1 .+ a grad/,$ 

and also 
alsEi(F(s)) + di 

as s --) 0. This shows that the Ei are orthonormal and orthogonal to y’. Now 
define an analytic curve 

s = {-(f o P)3g(Ri,,, ),,oF(y’~F),EioF)}i~j 

in the real vector space Mat (n - 1, n - 1) of real n - 1 x n - 1 matrices. Write 

R(s) = &(foP)‘(s) SF = Ebksk , 
kc0 

R(s) = &S(s) =&Sk , 
k=O 
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for s E ] - 6,6 [, 6 small enough. Define for k 2 3 

k-1 
Gk = -[ibtk(k- 3) + CO]-’ C(Ck-j -jbk-j+l)Gj , 

j=l 
Go=O, G,,G2 E W-' . (6.2) 

From ref. [ 13, p. 287 ] or ref. [20] we have the formula 

g U& W), En 1 

= sU&, (y/l, En) - -+ df(v’)2Kf + +(f 1 W, Y’) 6: 

+ a -+df(E,)df(E.) + $=W/)(E”,E”) + -+(df,df)* 6,m ) . 

(6.3) 

We evaluate at t = F(S) and use the notation H(f) for the hessian off with 
respect to h. Enumerate the terms on the right by I to VI. Then computations 
show that 

u-op>3 VI-, ~~Wf,df), 6; , 
(foPI I, u-oP)3 III, (IO/Q3 IV ) (j-Q)3 v+ 0 ) 

wQo3 II --t -&rh(df,df)p 6r , 

for s + 0. Hence CO = @(df,df) id = bi. Furthermore bz = 0. To see this 
take a chart (U, 4) around p and define pl, ..,p,, by 

B:(S) = Ch’ipj(s) . 

Differentiate both sides twice and use the local expression for Xz to verify 
that /A?? (0) = 0, hence b2 = 0. Also ci = 0, because each of the terms on the 
right hand side of (6.3) multiplied by (f o p)3 has vanishing derivative at 0. 
To see, for instance, that the derivative of (f o /?)3 II at 0 is 0 write 

P’(s) = s l(s) , 1(O) = icrgradhf , 

where I is analytic. The claim now follows by differentiating (f o j?) 3 II and 
using that 1’ (0) = 0 and 

b’(0) = (f 0 /l)“‘(O)/6a2 = 0 . 
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This shows that the Gk are well defined. Now take an M > 0 such that 

k-l 

where v, = rk ]I Gk ]I and r E IO,6 [- Put I’& = I&+, + I&+2, so that 

(k+ l)wk+l SMkwj , 

j=O 

and use ref. [4, p. 901 to get 

w, 5 
M(M+ l)...(M+k-1) 

k! w * 

This shows that for small enough s , Z(s) = c,‘=“, Gksk is well defined and 
a real analytic solution to 

a2s 
2 d2Z 

- = -R(S)(Z(S)) + H(s)(Z'(s)) . 
ds2 

(6.4) 

To see that the Z defined above solves (6.4), simply compare the power series 
expansions of the right and left hand sides of (6.4). Now define 

and expand the terms of the corresponding coordinate expression to verify 
that we can choose Zf(0) and Zr (0) to obtain the initial conditions as stated 
in the theorem. Using the definitions of H and R it is a simple matter to 
check that X o H is a Jacobi field on a punctured neighbourhood of 0 , from 
which we obtain Y. In fact 

(ZiOff)” = g(RioH ,t(f),Ei) . 

If W is another Jacobi field as stated in the theorem, then we can write 
WoF = C Wi EioF. Then V = (WI,..., Wn-l ) is analytic and satisfies (6.4). 
Hence V - Z satisfies (6.4) and then the arguments above show that 

vy-= + vy s 
IV(s) -ZWI 5 t1 _ ls,r121M (;I p IsI <r< 6 - 

Here the Vkvmz are the vk defined above, corresponding to the solution V - Z. 
This inequality shows that V = Z, thus W = Y. 0 
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7. Geodesic variations 

In this section we find geodesic variations whose variation vector field is 
a given Jacobi field along the geodesic y. To this end let a, b E I, where 
a < 0 < b. An analytic Vg geodesic variation of the restriction of y to 
] a, b [ \ (0) is a continuous map 

0: ]a,b[ x ]-C,E [ -,M 

such that rs is analytic in ]a,b[ \ (0) x ] - E,C [ , u H a(O,u) is a curve in 
z and for all u E ] --E,E [, 

are Vg geodesics in M\Z. 

Proposition 7.1. Let Y be the unique Jacobi field along y, such that Y o F 
extends analytically to JI , and such that Y is orthogonal to y’ and satisfies (6. I) 
with w = 0. Then there exists an analytic Vg geodesic variation 

CT: ]a,b[ x ] --E,E [ + M 

of the restriction of y to ]a, b [ \ (0) with variation vector field Y, that is 

~(t,O) = Y(t) 3 for tE la,b[ \ (01 . 

ProojI Take a neighbourhood I’ of 0, in T*M such that the closure of some 
open interval ]a,, bl [ containing H( [a, b] ) is contained in the domain of 
definition of @a, for every cyq E I’. Here @ denotes the flow of the Hamiltonian 
X; from the proof of theorem 4.1. Take an analytic curve c : ] - E, t 
such that f vanishes on the base curve rr* o c and 

c(u) = oR-OC(It) 9 (7r’oc)‘(O) = Y(0) . 

The metric h induces a raising operation #, hence d = #kc : ] - E, E [ 
satisfies 

%P3,,~ d(0) = tiyVi,Y OF(t) . 

Now define 

q : [a,,b,] x ] --E,E [ + M, (s,u)++a*o@(s,c(u)) . 

[‘V 

+TM 

(7.1) 
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Expand f o q to third order in the first argument at (0, u). Now use that 

(foWO>~) = $Wf,df),,(o,,,, 

togetfoq>Onear (0,O) andthenatevery (s,u) E [a,,b,] x ]--E,E[ ,s f 0, 
by choosing a smaller E if necessary. We now reparametrize q to an analytic 
Vg geodesic variation via 

for (t, u) E ]a, b [ x ] - E, E [, by reducing E if necessary. Now compute 
e 

$O,O) = df -(O 0) = df(Y(0)) = 0 , (2 ' ) 

From this it follows that 

t H gp(l,O),O) = W(t) 

= T~L*o T@,,(c'(O)) + P'(t) + z(s.0) 
s=E(t,O) (7.2) 

is analytic and also that its value at t = 0 is Y (0). Use (7.1) and the fact 
that the time derivative at zero of the differential of a flow is equal to the 
differential of the corresponding vector field to verify that 

V!,W(O) = iiqVi,Y OF(t) . 

To see this we have used df (lim,,c Vi,Y OF(~)) = 0 to show that 

~(O,O, = 0 . 

Hence the last term on the right hand side of (7.2) contributes a 0 to Vi, W (0). 
Since W o H is a Vg Jacobi field we have 

h(W,F) = UE(S,O) + b 
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for some a, b E R. Expanding the left hand side one obtains 

s312K I- terms of order 2 1 

for some nonzero K. Choosing 1 appropriately W o H becomes orthogonal 
to y’ and then the proposition follows from the uniqueness part in theorem 
6.1. 0 

Example 7.2. In R3 with coordinates (x1,x2,x3), the function f = x2 restricts 
to an analytic function on S2 with its usual metric tensor h. According to 
theorem 4.1 there is a geodesic y through ( 1, 0,O) for the metric tensor f h. In 
fact s H (cosS2,sins2,0), 1 s 1 < (7r)‘j2 can be reparametrized to an analytic 
curve b such that h (B’, .) is an integral curve for the Hamiltonian X; from the 
proof of theorem 4.1. A rotation around the xl-axis is an isometry for fh and 
yields an analytic variation of y through geodesics. This gives a Jacobi field 
Y as in theorem 6.1 with Y(a) = Y(b) = 0, where y(a) = r(b) = (O,l,O). 
Due to the existence of this Jacobi field, it also follows from proposition 7.1 
that (0, 1,0) is an almost meeting point for geodesics near y. 

There is also a comparison theorem in the present context, when M is a 
surface. 

Sturm comparison theorem 7.3. Suppose Wi, Ki, i = I,2 are analytic functions 
on I, and 

Kj(0) = +h(df,df),, K,'(O) = 0, K, 5 K2 . 

If Yj = s Wi satisfL 

LYi i yy - CSOB,',~ 
foB 

- -K'yi 
I-- foP 

(7.3) 

and W(a) = W,(b) = 0, WI(S) f 0, s E ]a,b[ ; then there exists an 
s E ]a,b[ such that We = 0 provided K1 f K2 on ]a, b [ . 

Proof: Assume for contradiction that WI, W2 > 0 on ]a, b [ . Verify that the 
integrand in 

J 

b 

(Yl LY2-Y2 LY*&ps = 
J 

b 

r, r,W1 -K2) 
1 

a 
a 

(f ojy)2* i O 

is analytic. Substitute t = F(s) to obtain the integrand 

(Y, OH (YzoH)‘- Y2oH (Y, OH)‘) 
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and argue as in ref. [ 16, p. 3331. 

21 

cl 

Remark 7.4. Notice, that on surfaces (6.4) has the form (7.3). 

For our purposes it turns out that the following proposition is more useful. 
So let 

P(s) = Et-1 )kak,k , ak>O, 
k=O 

be absolutely convergent in ] - r, r [ and define 

k=O 

Proposition 7.5. Suppose P2 has a root s2 E IO, r[ and 

-2k+l + a2k+2 32 5 0 (7.4) 

for all k 2 1. Then P has a positive root and thejirst of these, x, lies in ]0,s2]. 
If firthermore 

(7.5) 

for all k 2 1, then x 2 so/al. 

ProoJ Use (7.4) to find a strictly decreasing sequence (Slk)k>t of positive 
numbers such that &k (S2k) = 0 with limit point y 5 ~2. Then P(y) = 0. 
Notice that P (0) = a0 > 0. Now the last statement follows immediately from 
assumption (7.5). 0 

Example 7.6. On A4 = S2\{x2 = 0, XI 5 0) in R3 with coordinates (x1,x2,x3) 
we have an analytic function given by f (6,#) = 4 in spherical coordinates 
(0,d) on S2. According to ref. [ 12, p. 811 the sectional curvature K of 
(M, f h,M) is defined for 4 # 0 and when 19 = 7r/2 

.=$(l+$. 

Here h is the pullback to S2 of the standard metric tensor xi dx,? on W3. 
B(s) = te,4)ts) = (0,fs2) , fs2 E IO, 7c [ reparametrizes via F in (4.2) to 
a unit speed geodesic. The differential equation giving the Jacobi fields thus 
reads 

s2Z”(S) = -($s4 + 2 ) Z(s) + 2sZ’(s) , 
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cf. (6.4). Theorem 6.1 contains the solution formula (6.2), which yields the 
solution 

Z(s) = s + fj 
(-1)” 

A-=, 4k(4k- I)... 4.3.4” 
$4k+l 

’ 

This means that we can use proposition 7.5 to assert that the Jacobi field 

YoH, Y(S) = u~/~)z(~),o) 

has its first positive zero x in ] $, 3 [. As pointed out above we can repara- 
metrize j3 to a geodesic y through y (0) = j? (--x ). This geodesic hits the bad 
set Z for some positive time and then returns at time io to y (to) = p(x ). 
Above we found a Jacobi field along y that vanishes in 0 and to. According 
to proposition 7.1 y (lo) corresponds to an almost meeting point for nearby 
geodesics along the geodesic y. Notice that the initial curve of the geodesic 
variation guaranteed by proposition 7.1 is in the bad set E. We can therefore 
also think of y (to) as a focal point for the bad set .Z. So the Jacobi fields 
we found in theorem 6.1 give us information about the infinitesimal geodesic 
behaviour near a geodesic that hits the bad set Z. 
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